AdViSE: Adaptive Video Streaming Evaluation Framework for the **Automated Testing of Media Players**

Anatoliy Zabrovskiy, Evgeny Kuzmin, Evgeny Petrov, Petrozavodsk State University, {z_anatoliy, kuzmin, johnp}@petrsu.ru Christian Timmerer, Alpen-Adria-Universität Klagenfurt / Bitmovin Inc., christian.timmerer@itec.uni-klu.ac.at Christopher Mueller, Bitmovin Inc., christopher.mueller@bitmovin.com

 \rightarrow Output

Motivation

Current situation

- Adaptive video streaming over HTTP is becoming more and more the primary **technology** for video delivery in the open internet
- Nowadays, there exists a large number of different players/algorithms
- New versions of players are released in a short period
- Most of the players and their rate adaptation algorithms work as a **black box**
- There is no public, reliable information about the performance of adaptive media players

Research Goals/Questions

- Study and quantify the quality parameters and metrics using automated testing of media players
- Research and compare the media players behavior under various network scenarios
- Research QoE metrics for the adaptive video streaming

Adaptive HTML5 Players

Input \rightarrow

Adaptive Video Streaming Evaluation Framework

AdViSE

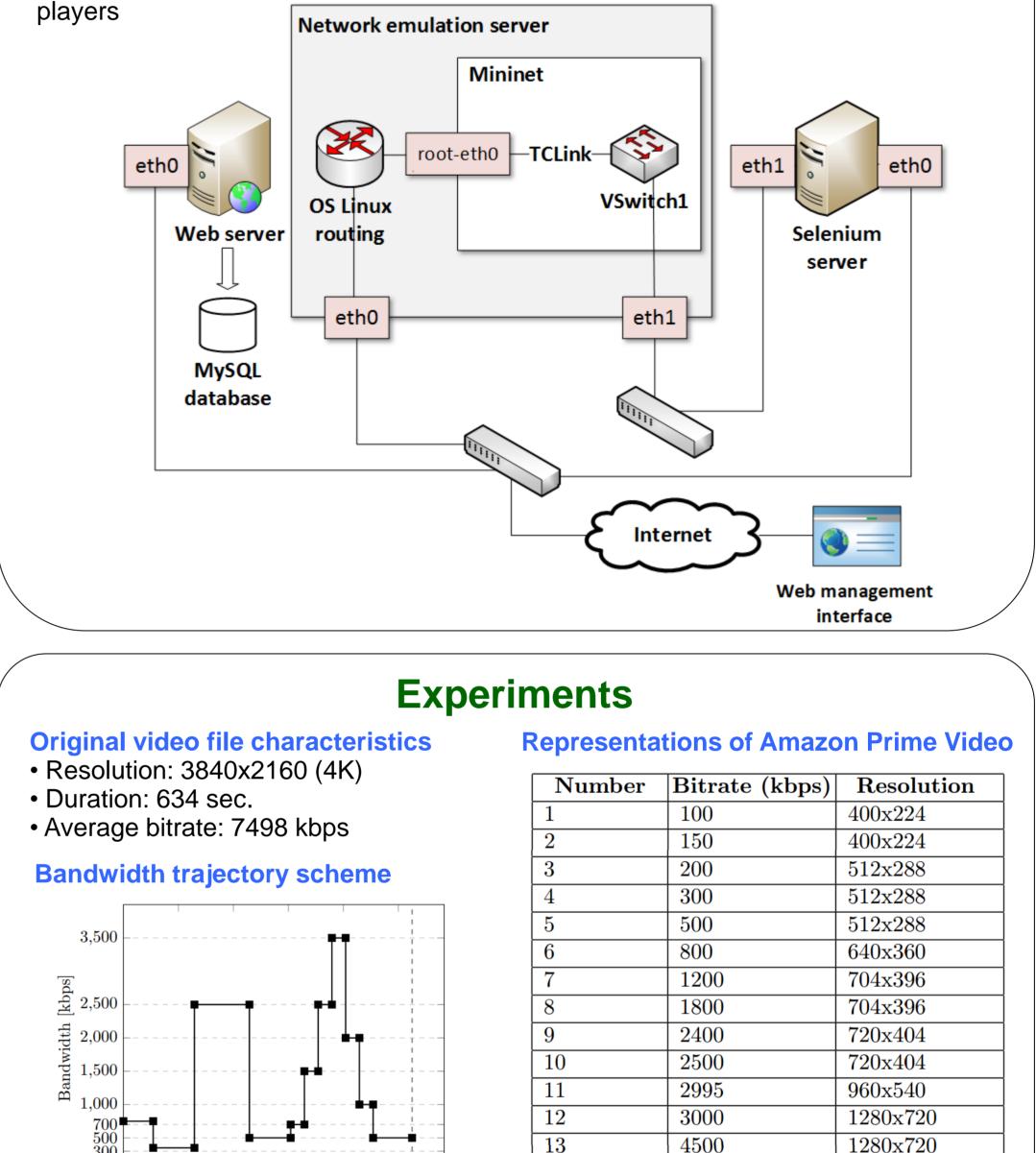
· Powerful tools to both researchers and practitioners which enable easy and rapid testing of new media player solutions and rate adaptation algorithms under a variety of context conditions

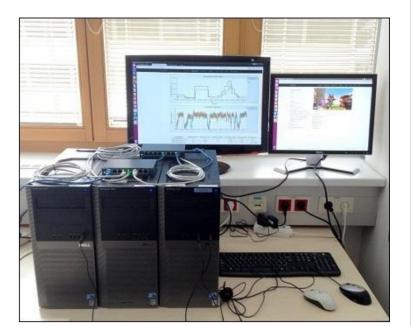
System Architecture

300

120

240


360


Time [Seconds]

480

600

- Web server with standard HTTP hosting the segmented video content and MySQL database
- Network emulation server with customized Mininet
- Selenium server for running adaptive media players on various platforms.
- · Web management interface for conducting the experiments and running the adaptive media

Context conditions

- The context conditions can be categorized into several areas:
- Access network: wired, WiFi, mobile 3G/4G/5G;
- Network architecture/paradigm: content delivery network (CDN), software-defined networking (SDN), information-centric networking (ICN);
- Client device: desktop, laptop, mobile, TV, set top box, virtual reality (VR)/head-mounted display (HMD);
- Client device condition/state: in motion, fixed;
- Server infrastructure: single server, direct stream from Internet of Multimedia Things (IoMT) device;
- Content characteristics: live or video on-demand, segment size (e.g., 2s, 4s, 6s or 9s), number of representations (bitrates, resolutions, languages), video codec, content profile.

One change in the context condition might have a big impact on the player behavior

Web Management Interface

Functions

- Configuring and conducting the experiments
- Presenting the player with real-time information about the currently conducted experiment and its parameters

Customizable items and parameters

- Management of network emulation profiles including the configuration of **bandwidth trajectory**, **packet** loss, and packet delay
- Specification of the number of runs of an experiment
- Selection of the adaptive media player and the adaptive streaming protocol (MPEG-DASH or HLS).

Result page

- Providing a list of conducted experiments
- Generating graphs of the results
- Providing various metrics of the conducted

Configuratio	n
Link characteristics	s / Bandwidth shaper
Klagenfurt	¥
Duration of experin	nent (Sec):
630	
Trajectory changing	g table (Sec):
5,60,90,120,90,30	,30,30,30,30,30,85
Bandwidth table (K	bps):
750,750,350,2500	,500,700,1500,2500,3500,2000,1000,500
Packet loss:	
0,0,0,0,0,0,0,0,0,0	,0,0
Packet delay:	
70,70,70,70,70,70	,70,70,70,70,70,70
Players, Algorithms	5:
Bitdash player 5.	.2.2 🔲 dash.js player 2.4.0 🔲 Shaka player 2.0.3
JW player 7.6.1	🗆 VideoJS player 5.9.2 🗏 Radiant player 3.10.8
HAS player 1.7	Bitdash player 7.0 🗐 THEOplayer 2.8.1
Elowplayer 6.0.5	
Protocol:	
MPEG-DASH H	ILS
Number of experim	ents:

Results

14

8000

Each experiment has been conducted five times and the average is presented here

experiments

• Exporting the raw values for a further offline analysis

Quality parameters and metrics

10

Start Experimen

- Download video bitrate (or selected video quality);
- Video buffer length (or video buffer level);
- Video startup time;
- Stalls (or buffer underruns);
- Number of quality switches.
- Unstability and inefficiency;
- Average video bitrate;

• QoE metrics: QoEMaki, which takes into account the number of stalls, total stalling time; **QOEMok** • **N** – the number of measurements which depends on video start-up time, stalling $\cdot W_{i,t}$ - network bandwidth frequency and average duration of a stalling event. • **b***i*, **t** - selected video bitrate

1920 x 1080

Inefficiency = $\frac{1}{N} \cdot \sum_{t} \frac{|b_{i,t} - W_{i,t}|}{W_{i,t}}$

Instability = $\frac{\sum_{d=0}^{k-1} |b_{t-d} - b_{t-d-1}|}{\sum_{d=1}^{k} b_{t-d}}$